销售咨询热线: 010-88552600

专家讲坛 | 电容的布局布线-"电源加磁珠",想说爱你不容易(中)

2017年09月27日

承前:从去耦半径出发,通过去耦半径的计算,让大家直观的看到我们常见的电容的“有效范围”问题。本节:讨论滤波电容的位置与PDN阻抗的关系,提出“全局电容”与“局部电容”的概念。能看到当电容呈现“全局特性”的时候,电容的位置其实没有想象中那么重要。

启后:多层板设计的时候,电容倾向于呈现“全局特性”,“电源加磁珠”的设计方法,会影响电容在全局范围内起作用。同时电源种类太多,还会带来其他设计问题。

通过上一篇文章,我们知道平常“耳熟能详”的电容去耦半径理论,对PCB设计其实没有什么指导意义。0.1uf的电容去耦半径足够大,设计中参考这个值没有用处,工程师还是会“尽量”把0.1uf电容靠近芯片的电源管教放置。PCB设计师需要更有效的理论来指导电容的布局设计。

既然简单的用四分之一波长理论推算的电容去耦半径不起作用,那么电容放置得离芯片电源管脚比较远,还会有哪些影响呢?很多人都答对了,影响安装电感。

我们来更详细的看看安装电感。从图1能看到,安装电感可以简单分为Labove和 Lbelow。


在这里引入两个概念:Labove 、Lbelow (电容和IC下面的电流回路大小不一定一样,但在这里分析的时候,假定大小等同)总电感:LTotal= 2Labove+LbelowLabove包括电容的ESL和Fan out带来的电感,我们会另外专题讨论电容的Fanout问题。至于Lbelow就更多收到电容位置的影响。简单来说,电容离芯片电源管脚越远,Lbelow围成的面积就越大,相应的安装电感就越大。

更具体点,Lbelow主要是两个过孔的自感和互感,当电容的位置离IC器件更近时,如图2所示,Lbelow的互感增大,因互感的作用与自感的作用相反,导致其整体电感减小,充放电速率更快。


可以列出一堆公式来推导这个互感乃至Lbelow,但这个不是我们的风格。


其实从图1可以简单看出,G和P之间的距离对Lbelow影响很大,G和P之间的距离越近,Lbelow对应的阴影区域面积就越小。而Lbelow越小,也就意味这电容可以放得越远,换句话说,电容的有效滤波范围更大。电容也就更加倾向于呈现“全局”特性。

下一节我们还会通过一个直观的仿真,让大家看到平面距离与安装电感的关系,以及为什么说在新的设计条件下,电容会呈现全局特性。

图3是一个简单的总结,更具体的分析,请听下回分解。


本文作者:吴均 (本文转载来源于网络)